Overview
This report summarizes the Tower Lakes silt removal operation that took place 2013 to 2016. The actual silt vacuuming operation took place as follows:

- Phase 1: July-October 2013;
- Phase 2: September-November 2014, and April-June 2015;
- Phase 3: July-October 2016.

The actual conception of the project and initial investigation work started considerably earlier, back in 2010. The silt removal was completed in October 2016. This report addresses why we executed the Silt Removal Project, how it was accomplished, and the initial results.

Definitions
First, a few definitions used in this report:

Aquatic Weeds: Undesirable plant species including, coontail, Eurasian watermilfoil, chara, duckweed, curlyleaf pondweed, and others.

Aquatic Plants: Desirable plant species, including, for example, water lilies and water hyacinths, among others.

Algae: Simple aquatic water plants that can either be planktonic (dispersed throughout the water column) or formed into "carpets" (filamentous algae) floating on the top of the water. One species, blue-green algae, is said to be toxic.

Eutrophication: The process by which a body of water becomes enriched with dissolved nutrients (such as phosphates) that stimulate the growth of aquatic plant life usually resulting in the depletion of dissolved oxygen. Lakes that cannot control this process will end up as “dead” lakes, and eventually bogs or swamps.

Traditional Dredging: Removal of silt / sediment by mechanical means. Large construction equipment is used to scoop muck from the bottom of the lake and deposit it elsewhere. Two methods can be used – (1) Floating barge or (2) Drain the lake, dry it out, and move construction equipment into the (drained) lake to scoop and remove the muck.

Hydraulic Dredging: Removal of silt by vacuuming the silt from the bottom of the lake either by barge or by individual divers. A sediment / water slurry is pumped to large collection bags which act as filters. Water drains from the bags; the silt is trapped inside.
Why did Tower Lakes embark on a Silt Removal Project?

- Thousands of pounds of organic material and nutrients are deposited into the lake every year via:
 - Leaves, fallen trees
 - Fertilizer runoff from surrounding homesites
 - (Possible) underperforming or failed septic systems
 - Animal feces, particularly Canada Geese and other waterfowl
 - Road storm water runoff
- When organic material dies, it sinks to the bottom of the lake. The dead organic material is digested by microbes which turns the dead organic material to muck (or silt, or sediment).
- Silt / muck build-up in our lakes has continued unabated for decades. The last major sediment removal initiative was done in 1965-68. The sediment was collected and used to form the current Soccer Field.
- One byproduct of the decomposition process is the release of inorganic nutrients to the water column. These nutrients consist of various phosphate and nitrate components.
- The nutrients formed during the decomposition of the organic material act as a type of “fertilizer” to promote undesirable weed and algae growth.
- The drawbacks of undesirable plant growth are:
 - Excessive weeds severely reduce boating (especially paddleboating), swimming, and could impact fishing if the overgrowth becomes severe.
 - The lake becomes unsightly – it begins to look like a swamp.
- The typical method to control undesirable plant growth is to use chemicals to kill the weeds and algae.
- However, this traditional method results in a continuous cycle of:
 1. Chemical herbicides are added to the lake(s) to kill the weeds and algae;
 2. Plants (or algae) die, sink to the bottom of the lake, and begin to decompose;
 3. The organic decomposition process continues unseen underwater. Microbes break down the dead plant material;
 4. The decomposition process consumes dissolved oxygen from the lake water. Oxygen depletion, if severe, can result in a fish kill.
 5. The decomposition process releases inorganic nutrients (like fertilizer) which fuels the growth of aquatic weeds or algae;
 6. Eventually, the decomposed organic material forms a layer of muck on the bottom of the lake;
What options were considered to break the "cycle"?

Several options were considered to maintain the condition of the lake. The three primary goals of the lake management process are:

1. To maintain a naturally “healthy” lake. This would promote desirable plant and fish species.
2. To maintain a visually appealing lake. This would mean control, so far as practical, of algal blooms and excessive aquatic weed growth.
3. To maintain recreation opportunities, including swimming, boating, and fishing.

To achieve each of the above goals, controlling the pace of the eutrophication process is critical. The eutrophication process is the beginning of the death spiral of a lake.

After considerable investigation of options, it was decided that inorganic nutrients trapped on the bottom of the lake in the form of muck should be removed to gain better control of the lake condition. This meant that some form of dredging of the lake, an option that had been considered in the past, was deemed necessary to maintain the present and future condition of the lake.

- Traditional dredging of the lake was considered. There are several drawbacks to this option. First, it is very expensive. Traditional dredging of our lake was estimated to cost at least $3 million, and probably closer to $5 million. Second, traditional dredging is very disruptive. The most effective way to do it is to drain the lake, let the lake bottom dry out, then manually scoop the material, load it into trucks, and dispose of the lake-bottom material by hauling it to a disposal site. The entire lake would be unusable for at least one, and probably two or three years. There would be significant disruption to the entire community during this operation.

- It was decided to hydraulically dredge sections of the Main Lake. This process, although not inexpensive, is considerably less costly than traditional dredging. It is also much less disruptive to the community.

What did we do and why?

- A small group of Association Members began to look into the process of hydraulic dredging in 2010-11. This initial “Silt Removal Team” (SRT- Adams, Bahr, Kubala) was formed and began investigations into several different aspects of the silt removal process.

- Potential silt removal contractors were researched in mid-2011. Two viable candidates emerged. Organics Sediment Removal Co. – a small Wisconsin-based company that had done a sediment removal project in the Farm Trails subdivision, and U.S. Aquavac Co. (USAV), a Midwest-based company that executed several projects in the Chicago area. References for both companies were checked. A visit to an operating USAV site was made. Homeowners and stakeholders of those projects were contacted and shared their impressions of the hydraulic dredging process and on each candidate-company, both positives and negatives.
As information was collected and additional volunteers joined the effort, a comprehensive lake management plan was developed. It was decided to propose a Five-Year Comprehensive Plan at a TLIA Town Hall Meeting on October 30, 2011. One major component of the 5-year plan was hydraulic dredging of the lake(s).

The Association agreed to fund the hydraulic dredging process. A five-year Special Assessment of $250 per household was ratified at the November 2011 Annual Meeting. A further breakdown of the financials is presented later in this report.

The requirements for operating permits were researched. Tower Lakes is a somewhat unusual entity in that it is part of an independent Village with a separate Homeowners Association. The lakes are “inland” lakes, not connected (via waterways) to other bodies of water. There is a “gray area” on the question of whether or not permits would be required to perform the silt removal operations, particularly because the silt would be used on Association property within Tower Lakes. One potential permit concern was that Main Lake overflow (via the spillway) makes its way through Wegner Fen to the Fox River, thereby connecting Tower Lakes to other waterways. It was decided that silt removal couldn’t be done like “in the good old days” in which Tower Lakes and its Association removed silt without concerns for permits or approvals from government agencies. It was decided that permits and/or approvals had to be obtained from the relevant agencies, namely Lake County Storm Water Management (LCSWM), the Illinois Environmental Protection Agency (IEPA), and the U.S. Army Corps of Engineers (USACE). The permit-approval process for hydraulic dredging was initiated.

A consultant company, Hey & Associates, was contracted to manage the permit process, provide necessary site inspections (for the permitting agencies), and to provide guidance during the silt removal operation.

The sediment was sampled for toxicity. Since chemical herbicides had been applied to the lake for decades to kill aquatic weeds and algae (especially copper sulfate – the standard algae herbicide), it was necessary to confirm that the lake bottom sediment was not a “hazardous material.” Muck / silt samples were taken in December 2011. The samples were sent to an outside environmental laboratory and analyzed in January 2012. It was confirmed that the sediment was not toxic.

Plant growth experiments were undertaken to confirm that the lake bottom sediment could be used within our park areas. Samples similar to those sent to the laboratory were used to grow grass (indoors) in January to March 2012. Due to the nutrient-rich nature of the sediment, grass grew extremely well in the experiments.

A silt survey, conducted by Integrated Lakes Management Co. (ILM) in 2005, was reconfirmed. The silt survey showed silt depths ranged from 0’ to 5’ throughout the lakes. There were relatively small areas of 5’ silt depths. However, there were significant areas of 3’ or 4’ silt depths throughout Main Lake.

Members of the SRT did an independent silt survey in 2012 to confirm ILM’s results. The silt depths were confirmed. If anything, it was apparent that additional silt had been deposited in Main Lake between 2005 and 2012.

Requests for Proposals (RFPs) were developed and sent to several possible silt removal contractors in February 2012.
Most contractors declined to bid on our project. For some, our project was too small. Some of those contractors engaged in large-scale dredging projects in (for example) Lake Michigan harbors. Other small proprietors (sometimes one or two person operations) declined to respond to our requests because they were already engaged in other projects.

Two realistic bids were received. One from U.S. Aquavac and a second from Organics Sediment Removal Co. On-site meetings were held with both potential bidders. Each proposal was rigorously reviewed and critiqued in May 2012.

U.S. Aquavac was selected as the preferred silt removal contractor. Among the reasons were:

- It had experience in our type of project – a small to midsize private lake. This project was not too big or too small for its capabilities.
- It was flexible and willing to adjust its operating parameters to TLIA requirements.

The Silt Removal Operation

The Silt Removal Project was divided into three phases. Other “auxiliary” phases are shown below as well.

Phase 1

- USAV conducted silt removal operations July to October 2013.
- Silt was removed from Davlin’s Pond and the Channel between Davlin’s Pond and Main Lake.
- Silt was collected in two locations:
 - McCarthy Property, at 700 Leon Drive. This location collected most of the silt from Davlin’s Pond in two 75-foot long bags. Roughly 354 dry, compressed cubic yards of sediment were collected at this site.
 - Circle Drive Park. This location collected some of the silt from the west section of Davlin’s Pond and all the silt from the Channel between Davlin’s Pond and Main Lake in two 100-foot long bags. Roughly 518 dry, compressed cubic yards of sediment were collected at this site.
- After bag dewatering and “drydown,” a total 872 dry, compressed cubic yards of sediment was calculated as collected at the two locations.
- Several silt removal contractors advised that sediment in the lake compressed (when dried and compacted) on a 10:1 to 12:1 wet to dry compression ratio. We will use the most conservative 10:1 volumetric ratio in this report. This meant that nearly 9,000 cubic yards of wet, dispersed sediment was collected from Davlin’s Pond and the Channel in 2013.
- Following is the graphical depiction of where silt was removed from Davlin’s Pond and the Channel during the Phase 1 Silt Removal Operation.
Phase 1 Silt Removal – Davlin’s Pond and Channel

Following are photos of the Silt Removal equipment:
Silt Removal Barge and Auger

Barge in Davlin’s Pond
Following are photos of silt collection bags used during the Phase 1 operation:

Two silt collection bags behind McCarthy residence (end of Leon Drive)

![Two silt collection bags behind McCarthy residence (end of Leon Drive)](image1)

One silt collection bag at Circle Drive Park

![One silt collection bag at Circle Drive Park](image2)
• **Phase 1A**
 - One of the 100-foot long Circle Drive silt bags was opened so that the sediment drying process could be accelerated.
 - Contacts were made to topsoil suppliers in an effort to sell the nutrient-rich sediment. Unfortunately, the dried, compressed sediment had a clay-like consistency. The material would have to be loaded into trucks and taken to be screened and pulverized. Once pulverized, the material was very grainy or gritty. Topsoil suppliers were not interested in the material unless used for “fill.” The material could not be sold. The trucking costs would have been significant. It was calculated that it would cost roughly $20,000 to $25,000 to dispose of the dried sediment on the Circle Drive site.
 - The contents of the opened bag were stacked and stored on the south edge of Circle Drive Park to make room for additional silt removal bags to be used in Phase 2 of the project.

Initial bag opening at Circle Drive Park

![Initial bag opening at Circle Drive Park](image1)

Bag opening and stacking of silt at Circle Drive Park

![Bag opening and stacking of silt at Circle Drive Park](image2)
- **Phase 2**
 - USAV conducted silt removal operations September to November 2014 until the lake became too cold to continue operations. Phase 2 work was restarted in April 2015 and continued until the end of June 2015.
 - Silt was removed from the north section of Main Lake (south of Roberts Road) and around the north and east sides of Toy Island.
 - Silt was collected at Circle Drive Park. This location used two 50-foot long bags and one 100-foot long bag.
 - After bag dewatering and “drydown,” a total 387 dry, compressed cubic yards of sediment was calculated as collected at the Circle Drive location during Phase 2 operation.
 - Based on the 10:1 wet to dry compression ratio, approximately 4,000 cubic yards of wet, dispersed sediment was collected from north Main Lake in 2014.
 - Following is the graphical depiction of where silt was removed from north Main Lake and around Toy Island during the Phase 2 Silt Removal Operation.

Phase 2 Silt Removal – (north) Main Lake and Toy Island
• **Phase 1 + Phase 2**
 - It is estimated that 354 cu. yds. of dried, compressed silt were collected on McCarthy property during the Phase 1 operation.
 - It is estimated that 906 cu. yds. of dried, compressed silt were collected at Circle Drive Park during the Phase 1 + Phase 2 operation.
 - A total of 1,260 cu. yds. of dried, compressed silt was collected during the Phase 1 and Phase 2 operations (combined) at both sites.
 - Based on a 10:1 wet to dry compression ratio, approximately 12,600 cu. yds. of wet, dispersed lake sediment was collected during the combined Phase 1 & Phase 2 operation.

• **Lathan’s Landing Phase**
 - Circle Drive Park had approximately 906 cubic yards of dried compressed silt that either had to be trucked away or used on the site.
 - Sediment disposal costs were estimated to be between $20,000 and $25,000. [906 cubic yards; 10 cu.yds/truckload; $250-275 per truckload to haul away].
 - Due to the potentially large sediment disposal costs, the Silt Removal Team considered ways to use the sediment on the site. At the same time, the existing drainage system (piping and open sewer) from North Lake to the Channel was undersized and at least partially broken. During large rain events, the drainage piping and sewer would be overwhelmed by the overflow from the North Lake “beehive,” which would overflow the Circle Drive sewer system, and cascade down toward the Channel. Over the years, a depression had been scoured out leaving a swampy, mucky, and unsightly area.
 - It was decided to kill multiple birds with one stone. The scoured-out depression would be filled with sediment from the Phase 1 and Phase 2 silt collection effort (at Circle Drive) and a first-class boat launch at Lathan’s Landing would be created. Before that would be done, the North Lake-to-Channel overflow drainage system would be upgraded and installed.
 - Details of the Lathan’s Landing phase of the silt removal program will not be addressed in this report.
 - Following are before and after photos of the Lathan’s Landing renovation.
Looking north from Channel toward North Lake - Before

Looking north from Channel toward North Lake - After
Looking south from North Lake toward Channel - Before

Looking south from North Lake toward Channel - After
Looking southwest toward toward Roberts Road culvert - Before

Looking southwest toward toward Roberts Road culvert – After
• **Phase 2A**

 o Preparations for the next phase of the work were done at “Kelsey Woods,” a wooded TLIA area immediately north of Kelsey Road and east of South Hills Road.

 o Permit applications were submitted to LCSWM, IEPA, and USACE. Permits were received in July 2016.

 o Site prep work included (1) clearing the area of brush and dead trees; (2) grading and leveling; (3) creating trenches for silt bag water runoff; and (4) installation of silt fences, coir logs, floating silt curtains, and some polymer material to minimize the return of suspended solids back to the lake.

 Kelsey Woods Silt Collection Area – Before Clearing

 ![Kelsey Woods Silt Collection Area – Before Clearing](image)

 Kelsey Woods Silt Collection Area – After Clearing

 ![Kelsey Woods Silt Collection Area – After Clearing](image)
Kelsey Woods Water Runoff Trench – Before Clearing

Kelsey Woods Water Runoff Trench – After Clearing
- **Phase 3**
 - USAV conducted silt removal operations July to October 2016.
 - Silt was removed from the southeast section of Main Lake (near Edwards Road) and collected at Kelsey Woods. Three 100-foot long bags were used to collect and dewater the sediment. Roughly 1,200 cu.yds of dried, compressed sediment was collected during this phase of the operation.
 - Based on the 10:1 wet to dry compression ratio, approximately 12,000 cubic yards of wet, dispersed sediment was collected from the southeast section of Main Lake in 2016.
 - The intent is to use the Kelsey Woods site as the primary location for future silt collection operations. This area is out-of-the-way and not visible to Association homeowners.
 - Following is the graphical depiction of where silt was removed from southeast Main Lake during the Phase 3 Silt Removal Operation.

Phase 3 Silt Removal – (southeast) Main Lake
Kelsey Woods Three 100’ Long Silt Collection Bags

- Combined Silt Removal Phases 1, 2, and 3
 - USAV conducted all silt removal operations. No other silt removal contractor was used. Silt removal was done from 2013 through 2016.
 - Using very conservative bag measurements, 2,460 cubic yards of dried, compressed sediment was removed from Davlin’s Pond, the Channel, and Main Lake during all three phases of the silt removal operation. The actual volume of dried silt collected was over 2,500 cubic yards.
 - Using a standard dump truck capacity of 10 cubic yards, roughly 250 dump truck loads of dried, compressed sediment was removed from our lake(s).
 - Based on a 10:1 wet to dry compression ratio, approximately 25,000 cubic yards of wet, dispersed sediment was collected from the lakes.
 - Using the same standard dump truck, about 2,500 dump truck loads of wet, dispersed sediment was collected from our lakes.
Financial

<table>
<thead>
<tr>
<th></th>
<th>Subtotal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLIA Receivables</td>
<td></td>
<td>$434,283.14</td>
</tr>
<tr>
<td>FY 2011-2012</td>
<td>$85,250.00</td>
<td></td>
</tr>
<tr>
<td>FY 2012-2013</td>
<td>$84,221.73</td>
<td></td>
</tr>
<tr>
<td>FY 2013-2014</td>
<td>$92,605.00</td>
<td></td>
</tr>
<tr>
<td>FY 2014-2015</td>
<td>$83,711.41</td>
<td></td>
</tr>
<tr>
<td>FY 2015-2016</td>
<td>$88,495.00</td>
<td></td>
</tr>
<tr>
<td>Non-Silt Removal Expenses</td>
<td></td>
<td>$79,534.98</td>
</tr>
<tr>
<td>Consulting</td>
<td>$43,140.64</td>
<td></td>
</tr>
<tr>
<td>Permits</td>
<td>$8,370.00</td>
<td></td>
</tr>
<tr>
<td>Site Prep</td>
<td>$19,941.32</td>
<td></td>
</tr>
<tr>
<td>Misc. Other</td>
<td>$8,083.02</td>
<td></td>
</tr>
<tr>
<td>Silt Removal Expenses</td>
<td></td>
<td>$326,997.00</td>
</tr>
<tr>
<td>Phase 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bags</td>
<td>$17,400.00</td>
<td></td>
</tr>
<tr>
<td>Vacuum Operation</td>
<td>$101,150.00</td>
<td></td>
</tr>
<tr>
<td>Phase 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bags</td>
<td>$10,400.00</td>
<td></td>
</tr>
<tr>
<td>Vacuum Operation</td>
<td>$91,000.00</td>
<td></td>
</tr>
<tr>
<td>Phase 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bags</td>
<td>$16,047.00</td>
<td></td>
</tr>
<tr>
<td>Vacuum Operation</td>
<td>$91,000.00</td>
<td></td>
</tr>
<tr>
<td>Total Bags</td>
<td>$43,847.00</td>
<td></td>
</tr>
<tr>
<td>Total Silt Vacuum</td>
<td>$283,150.00</td>
<td></td>
</tr>
<tr>
<td>Lathan's Landing Expenses</td>
<td>$65,227.27</td>
<td>$29,177.27</td>
</tr>
<tr>
<td>Non-Construction</td>
<td>$8,626.65</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td>$56,600.62</td>
<td></td>
</tr>
<tr>
<td>VOTL Cost Share</td>
<td>$(21,750.00)</td>
<td></td>
</tr>
<tr>
<td>WMB Grant</td>
<td>$(12,000.00)</td>
<td></td>
</tr>
<tr>
<td>LCSWM Refunds</td>
<td>$(2,300.00)</td>
<td></td>
</tr>
<tr>
<td>Total Silt Removal Program Expense</td>
<td>$435,709.25</td>
<td></td>
</tr>
</tbody>
</table>

1 Note: Financial information shown for this report is the best estimate of all Receivables and Expenses as of October 21, 2016.
From the table above, we can see or determine the following:

- A 5-year Special Assessment to the TLIA Homeowners was used to fund the Silt Removal Program. The assessment, and hence budget, for the program was $434,283.14. ²
- Total expenditures for the program were $435,709.25.
- Actual silt removal expenses (payments made to U.S. Aquavac) were $326,997. Vacuuming operations (actual silt removal) constituted $283,150 or 87% of the silt removal expense. Bags (two at McCarthy Property, seven at Circle Drive, and three at Kelsey Woods) constituted $43,847 or 13% of the actual silt removal expense.
- Actual silt removal expenses ($327k) were roughly 75% of the total expenses for the program (65% for vacuuming operations; 10% for collection bags).
- Non-silt removal costs were $79,534.98 divided between project requirements including permits, consulting fees, site preparation, and miscellaneous costs. Overall, non-silt removal costs constituted 18% of the total cost of the program.
- TLIA’s share of the cost to renovate Lathan’s Landing was $29,177.27. This was paid from the Silt Removal Program budget as “remediation in place” for the new TLIA asset (new Lathan’s Landing boat launch and Circle Drive Park renovation). This Lathan’s Landing Project comprised almost 7% of the total cost of the program.
- It cost $435,709.25 to remove 2,500 dried and compressed cubic yards of silt for a cost of $174 per dry cubic yard.
- It cost the same amount to remove approximately 25,000 cubic yards of wet, dispersed lake sediment (at a 10:1 volumetric compression ratio) for a cost of $17 per wet cubic yard.

² Note: The Special Assessment (TLIA receivables) value in the table is the estimated amount received at the time this report was created.
Following is a graphical depiction of the Project expenditures:

Total Expenditures $435,709.25

- Silt Pumping, $(283,150.00), -65%
- Consulting, $(43,140.64), -10%
- Permitting, $(8,370.00), -2%
- Lathan’s Landing, $(29,177.27), -7%
- Remediation, $(8,083.02), -2%
- BAG Cost, $(43,847.00), -10%
- Set Up, $(19,941.32), -6%

What did we learn?

- There were numerous regulating agency requirements that had to be learned and applied to our project. Obtaining permits to execute the program generally took much longer than anticipated.
- There is a considerable amount of sediment in Main Lake, North Lake, Davlin’s Pond, the Channel, and other smaller ponds.
- Silt removal from a mud-bottom lake is a difficult process. There are regular equipment breakdowns due to the difficulty of the operation.
- Two different methods of silt removal can be used. A barge and auger removed most of the silt in all three phases of the Tower Lakes operation. Divers with vacuum hoses removed the silt in the Channel because it was not feasible to use the barge in the narrow and winding passage between Main Lake and Davlin’s Pond.
• At times it was difficult to keep the silt removal contractor on task. Along with equipment breakdowns, there were personnel issues that the contractor had to manage (resignations, different project managers) to keep the job moving. It was imperative that TLIA witnessed and managed the contractor or the results could have been less than satisfactory.

• Other lakes in the area are experiencing (poor) water quality issues and some Homeowners Associations are considering silt removal to improve the quality of their lakes.

• Non-silt removal costs can be substantial and should be carefully controlled, so far as practical.

Did it work?
• Before embarking on the program, the condition of the lake during certain summer periods was very poor. Significant growth of aquatic weeds made boating and swimming in Main Lake difficult or impossible.

• There is no recent, comprehensive data collected or available to confirm the water quality of the lake has improved due to the silt removal operation. However, members of the lake committee believe that there has been a noticeable improvement in the appearance of Main Lake.

• There is empirical evidence that the diversity of plants and fish has increased and that the fish population is healthier.

• The Silt Removal Team considers that the silt removal program has been a success.

Should we keep doing it?
There is no doubt silt and sediment had built up in our lakes over decades. If left unchecked, the water quality of the lakes will slowly deteriorate to the point that the lakes will become a detriment, not an asset, to our community.

The Silt Removal Team recommends that Tower Lakes should continue the program to remove silt from its lakes. Silt removal should be one of several strategies to maintain, and even improve, the quality of our lakes.

If you have any questions related to this project, please do not hesitate to contact me.

Respectfully,

Nick Adams

Tower Lakes Improvement Association

Written October 21, 2016